0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 1 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 460 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 96 ms)
↳18 CpxRNTS
↳19 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 1282 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 345 ms)
↳24 CpxRNTS
↳25 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳26 CpxRNTS
↳27 IntTrsBoundProof (UPPER BOUND(ID), 360 ms)
↳28 CpxRNTS
↳29 IntTrsBoundProof (UPPER BOUND(ID), 69 ms)
↳30 CpxRNTS
↳31 FinalProof (⇔, 0 ms)
↳32 BOUNDS(1, n^3)
le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))
le(0, Y) → true [1]
le(s(X), 0) → false [1]
le(s(X), s(Y)) → le(X, Y) [1]
minus(0, Y) → 0 [1]
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y) [1]
ifMinus(true, s(X), Y) → 0 [1]
ifMinus(false, s(X), Y) → s(minus(X, Y)) [1]
quot(0, s(Y)) → 0 [1]
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y))) [1]
le(0, Y) → true [1]
le(s(X), 0) → false [1]
le(s(X), s(Y)) → le(X, Y) [1]
minus(0, Y) → 0 [1]
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y) [1]
ifMinus(true, s(X), Y) → 0 [1]
ifMinus(false, s(X), Y) → s(minus(X, Y)) [1]
quot(0, s(Y)) → 0 [1]
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y))) [1]
le :: 0:s → 0:s → true:false 0 :: 0:s true :: true:false s :: 0:s → 0:s false :: true:false minus :: 0:s → 0:s → 0:s ifMinus :: true:false → 0:s → 0:s → 0:s quot :: 0:s → 0:s → 0:s |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
quot
minus
le
ifMinus
ifMinus(v0, v1, v2) → 0 [0]
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
0 => 0
true => 1
false => 0
ifMinus(z, z', z'') -{ 1 }→ 0 :|: Y >= 0, z = 1, z'' = Y, z' = 1 + X, X >= 0
ifMinus(z, z', z'') -{ 0 }→ 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0
ifMinus(z, z', z'') -{ 1 }→ 1 + minus(X, Y) :|: Y >= 0, z'' = Y, z' = 1 + X, X >= 0, z = 0
le(z, z') -{ 1 }→ le(X, Y) :|: z = 1 + X, Y >= 0, z' = 1 + Y, X >= 0
le(z, z') -{ 1 }→ 1 :|: z' = Y, Y >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z = 1 + X, X >= 0, z' = 0
minus(z, z') -{ 2 }→ ifMinus(le(X, Y'), 1 + X, 1 + Y') :|: z = 1 + X, Y' >= 0, X >= 0, z' = 1 + Y'
minus(z, z') -{ 2 }→ ifMinus(0, 1 + X, 0) :|: z = 1 + X, X >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' = Y, Y >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: Y >= 0, z' = 1 + Y, z = 0
quot(z, z') -{ 2 }→ 1 + quot(ifMinus(le(1 + X', Y), 1 + X', Y), 1 + Y) :|: Y >= 0, z' = 1 + Y, X' >= 0, z = 1 + (1 + X')
quot(z, z') -{ 2 }→ 1 + quot(0, 1 + Y) :|: Y >= 0, z = 1 + 0, z' = 1 + Y
ifMinus(z, z', z'') -{ 1 }→ 0 :|: z'' >= 0, z = 1, z' - 1 >= 0
ifMinus(z, z', z'') -{ 0 }→ 0 :|: z >= 0, z' >= 0, z'' >= 0
ifMinus(z, z', z'') -{ 1 }→ 1 + minus(z' - 1, z'') :|: z'' >= 0, z' - 1 >= 0, z = 0
le(z, z') -{ 1 }→ le(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 2 }→ ifMinus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0
minus(z, z') -{ 2 }→ ifMinus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
quot(z, z') -{ 2 }→ 1 + quot(ifMinus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 2 >= 0
quot(z, z') -{ 2 }→ 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0
{ le } { ifMinus, minus } { quot } |
ifMinus(z, z', z'') -{ 1 }→ 0 :|: z'' >= 0, z = 1, z' - 1 >= 0
ifMinus(z, z', z'') -{ 0 }→ 0 :|: z >= 0, z' >= 0, z'' >= 0
ifMinus(z, z', z'') -{ 1 }→ 1 + minus(z' - 1, z'') :|: z'' >= 0, z' - 1 >= 0, z = 0
le(z, z') -{ 1 }→ le(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 2 }→ ifMinus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0
minus(z, z') -{ 2 }→ ifMinus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
quot(z, z') -{ 2 }→ 1 + quot(ifMinus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 2 >= 0
quot(z, z') -{ 2 }→ 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0
ifMinus(z, z', z'') -{ 1 }→ 0 :|: z'' >= 0, z = 1, z' - 1 >= 0
ifMinus(z, z', z'') -{ 0 }→ 0 :|: z >= 0, z' >= 0, z'' >= 0
ifMinus(z, z', z'') -{ 1 }→ 1 + minus(z' - 1, z'') :|: z'' >= 0, z' - 1 >= 0, z = 0
le(z, z') -{ 1 }→ le(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 2 }→ ifMinus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0
minus(z, z') -{ 2 }→ ifMinus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
quot(z, z') -{ 2 }→ 1 + quot(ifMinus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 2 >= 0
quot(z, z') -{ 2 }→ 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0
le: runtime: ?, size: O(1) [1] |
ifMinus(z, z', z'') -{ 1 }→ 0 :|: z'' >= 0, z = 1, z' - 1 >= 0
ifMinus(z, z', z'') -{ 0 }→ 0 :|: z >= 0, z' >= 0, z'' >= 0
ifMinus(z, z', z'') -{ 1 }→ 1 + minus(z' - 1, z'') :|: z'' >= 0, z' - 1 >= 0, z = 0
le(z, z') -{ 1 }→ le(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 2 }→ ifMinus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0
minus(z, z') -{ 2 }→ ifMinus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
quot(z, z') -{ 2 }→ 1 + quot(ifMinus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 2 >= 0
quot(z, z') -{ 2 }→ 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0
le: runtime: O(n1) [1 + z'], size: O(1) [1] |
ifMinus(z, z', z'') -{ 1 }→ 0 :|: z'' >= 0, z = 1, z' - 1 >= 0
ifMinus(z, z', z'') -{ 0 }→ 0 :|: z >= 0, z' >= 0, z'' >= 0
ifMinus(z, z', z'') -{ 1 }→ 1 + minus(z' - 1, z'') :|: z'' >= 0, z' - 1 >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 2 + z' }→ ifMinus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0
minus(z, z') -{ 2 }→ ifMinus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
quot(z, z') -{ 2 + z' }→ 1 + quot(ifMinus(s'', 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 2 >= 0
quot(z, z') -{ 2 }→ 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0
le: runtime: O(n1) [1 + z'], size: O(1) [1] |
ifMinus(z, z', z'') -{ 1 }→ 0 :|: z'' >= 0, z = 1, z' - 1 >= 0
ifMinus(z, z', z'') -{ 0 }→ 0 :|: z >= 0, z' >= 0, z'' >= 0
ifMinus(z, z', z'') -{ 1 }→ 1 + minus(z' - 1, z'') :|: z'' >= 0, z' - 1 >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 2 + z' }→ ifMinus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0
minus(z, z') -{ 2 }→ ifMinus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
quot(z, z') -{ 2 + z' }→ 1 + quot(ifMinus(s'', 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 2 >= 0
quot(z, z') -{ 2 }→ 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0
le: runtime: O(n1) [1 + z'], size: O(1) [1] ifMinus: runtime: ?, size: O(n1) [z'] minus: runtime: ?, size: O(n1) [z] |
ifMinus(z, z', z'') -{ 1 }→ 0 :|: z'' >= 0, z = 1, z' - 1 >= 0
ifMinus(z, z', z'') -{ 0 }→ 0 :|: z >= 0, z' >= 0, z'' >= 0
ifMinus(z, z', z'') -{ 1 }→ 1 + minus(z' - 1, z'') :|: z'' >= 0, z' - 1 >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 2 + z' }→ ifMinus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0
minus(z, z') -{ 2 }→ ifMinus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
quot(z, z') -{ 2 + z' }→ 1 + quot(ifMinus(s'', 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 2 >= 0
quot(z, z') -{ 2 }→ 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0
le: runtime: O(n1) [1 + z'], size: O(1) [1] ifMinus: runtime: O(n2) [5 + 3·z' + z'·z'' + z''], size: O(n1) [z'] minus: runtime: O(n2) [7 + 3·z + z·z' + 2·z'], size: O(n1) [z] |
ifMinus(z, z', z'') -{ 1 }→ 0 :|: z'' >= 0, z = 1, z' - 1 >= 0
ifMinus(z, z', z'') -{ 0 }→ 0 :|: z >= 0, z' >= 0, z'' >= 0
ifMinus(z, z', z'') -{ 5 + 3·z' + z'·z'' + z'' }→ 1 + s3 :|: s3 >= 0, s3 <= 1 * (z' - 1), z'' >= 0, z' - 1 >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 7 + 3·z }→ s1 :|: s1 >= 0, s1 <= 1 * (1 + (z - 1)), z - 1 >= 0, z' = 0
minus(z, z') -{ 7 + 3·z + z·z' + 2·z' }→ s2 :|: s2 >= 0, s2 <= 1 * (1 + (z - 1)), s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
quot(z, z') -{ 4 + 2·z + z·z' + z' }→ 1 + quot(s4, 1 + (z' - 1)) :|: s4 >= 0, s4 <= 1 * (1 + (z - 2)), s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 2 >= 0
quot(z, z') -{ 2 }→ 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0
le: runtime: O(n1) [1 + z'], size: O(1) [1] ifMinus: runtime: O(n2) [5 + 3·z' + z'·z'' + z''], size: O(n1) [z'] minus: runtime: O(n2) [7 + 3·z + z·z' + 2·z'], size: O(n1) [z] |
ifMinus(z, z', z'') -{ 1 }→ 0 :|: z'' >= 0, z = 1, z' - 1 >= 0
ifMinus(z, z', z'') -{ 0 }→ 0 :|: z >= 0, z' >= 0, z'' >= 0
ifMinus(z, z', z'') -{ 5 + 3·z' + z'·z'' + z'' }→ 1 + s3 :|: s3 >= 0, s3 <= 1 * (z' - 1), z'' >= 0, z' - 1 >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 7 + 3·z }→ s1 :|: s1 >= 0, s1 <= 1 * (1 + (z - 1)), z - 1 >= 0, z' = 0
minus(z, z') -{ 7 + 3·z + z·z' + 2·z' }→ s2 :|: s2 >= 0, s2 <= 1 * (1 + (z - 1)), s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
quot(z, z') -{ 4 + 2·z + z·z' + z' }→ 1 + quot(s4, 1 + (z' - 1)) :|: s4 >= 0, s4 <= 1 * (1 + (z - 2)), s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 2 >= 0
quot(z, z') -{ 2 }→ 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0
le: runtime: O(n1) [1 + z'], size: O(1) [1] ifMinus: runtime: O(n2) [5 + 3·z' + z'·z'' + z''], size: O(n1) [z'] minus: runtime: O(n2) [7 + 3·z + z·z' + 2·z'], size: O(n1) [z] quot: runtime: ?, size: O(n1) [z] |
ifMinus(z, z', z'') -{ 1 }→ 0 :|: z'' >= 0, z = 1, z' - 1 >= 0
ifMinus(z, z', z'') -{ 0 }→ 0 :|: z >= 0, z' >= 0, z'' >= 0
ifMinus(z, z', z'') -{ 5 + 3·z' + z'·z'' + z'' }→ 1 + s3 :|: s3 >= 0, s3 <= 1 * (z' - 1), z'' >= 0, z' - 1 >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z' - 1 >= 0, z - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 7 + 3·z }→ s1 :|: s1 >= 0, s1 <= 1 * (1 + (z - 1)), z - 1 >= 0, z' = 0
minus(z, z') -{ 7 + 3·z + z·z' + 2·z' }→ s2 :|: s2 >= 0, s2 <= 1 * (1 + (z - 1)), s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
quot(z, z') -{ 4 + 2·z + z·z' + z' }→ 1 + quot(s4, 1 + (z' - 1)) :|: s4 >= 0, s4 <= 1 * (1 + (z - 2)), s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 2 >= 0
quot(z, z') -{ 2 }→ 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0
le: runtime: O(n1) [1 + z'], size: O(1) [1] ifMinus: runtime: O(n2) [5 + 3·z' + z'·z'' + z''], size: O(n1) [z'] minus: runtime: O(n2) [7 + 3·z + z·z' + 2·z'], size: O(n1) [z] quot: runtime: O(n3) [1 + 4·z + z·z' + 2·z2 + z2·z'], size: O(n1) [z] |